ACETYLENE INHIBITION OF NITROUS OXIDE REDUCTION BY DENITRIFYING BACTERIA

Tadashi Yoshinari and Roger Knowles

Department of Microbiology, Macdonald Campus of McGill University, Ste. Anne de Bellevue, Quebec HOA 100, Canada.

Received February 10,1976

Summary Acetylene (0.1 atm) caused complete or almost complete inhibition of reduction of N₂0 by whole cell suspensions of Pseudomonas perfectomarinus, P. aeruginosa and Micrococcus denitrificans. Acetylene did not inhibit reduction of NO₃ or NO₂ by these organisms. In the presence of acetylene there was stoichiometric conversion of NO₃ or NO₂ to N₂0 with negligible subsequent reduction of the latter. In the absence of acetylene there was no or only transient accumulation of N₂0. The data are consistent with the view that N₂0 is an obligatory intermediate in the reduction of NO₂ to N₂ in all of the three organisms studied.

The pathway by which nitrogenous oxides are reduced to dinitrogen (N_2) by denitrifying bacteria appears to depend on the species. Partial purification of enzyme fractions from Pseudomonas perfectomarinus (10), and studies of inhibition of nitrous oxide (N_20) reductase by azide (N_3^-) , cyanide (CN^-) and dinitrophenol (DNP) in Pseudomonas denitrificans (8) showed that N_20 was an obligatory intermediate in the reduction of nitrite $(N0_2^-)$ to N_2 . However, studies of the effects of inhibitors such as N_3^- , CN^- and DNP on reduction of $N0_2^-$ and N_20 in Pseudomonas stutzeri (1), P. denitrificans (12) and Micrococcus denitrificans (11) suggested that N_20 was not an obligatory intermediate.

Fedorova et al. (4), in a study of extra-terrestrial life detection, reported that acetylene (C_2H_2) inhibited the reduction of N_2O during denitrification.

We confirm here that C_2H_2 inhibits reduction of N_2O by three denitrifying bacteria, P. perfectomarinus, P. aeruginosa and M. denitrificans. We report also that during reduction of NO_3^- or NO_2^- , C_2H_2 causes accumulation of N_2O with a stoichiometry which suggests that N_2O is an obligatory intermediate in the reduction of NO_2^- to N_2 in all three species of denitrifier.

MATERIALS and METHODS

Organisms Pseudomonas perfectomarinus was obtained from Dr. W.J. Payne, University of Georgia. Micrococcus denitrificans (NRC #14029) was obtained from the National Research Council of Canada, Ottawa. Pseudomonas aeruginosa was from the Macdonald College culture collection (Mac #67).

Media and Incubation P. perfectomarinus was grown aerobically on a rotary shaker for 24 hr at 25° C in the medium of Best and Payne (2) modified as follows: 0.2 M NaCl, 0.05 M MgSO₄, 0.01 M KCl, 0.01 M CaCl₂, 0.01 M NaNO₃, 0.5% Tryptone and 0.15% Yeast Extract (Difco). Late log phase cells were harvested from 60 ml of growth medium and washed three times by centrifugation (3300 g at 4° C for 15 min) and resuspension in nitrate-free artificial sea water (ASW: NaCl, MgSO₄, KCl and CaCl₂ as above). Aliquots (0.5 ml) of the cell suspension containing (1.6 \times 10¹¹ cells) were transferred to 50-ml sterile Erlenmeyer flasks each containing 10 ml of the above medium without nitrate. After closing with sterile serum stoppers (Suba-Seal, England), the flasks were evacuated and back-filled with sterile helium to one atmosphere three times. When required, 5.0 ml of gas phase was replaced with the same volume of acetylene (C₂H₂) to give a final concentration of 0.1 atm. Also, when desired 0.5 ml N₂O, or 0.4 ml of 100 mM NaNO₂ or NaNO₃ was added to give a final concentration of 560 µg N per flask. Flasks were incubated at 24° C with occasional shaking.

P. aeruginosa and M. denitrificans were grown in Vernon's medium (14) under initially aerobic conditions on a rotary shaker for 24 hr at 32° C. Late log phase cells were harvested and treated similarly to those of P. perfectomarinus except that they were washed with 0.85% sodium chloride (NaCl) solution. Aliquots (0.5 ml) of the cell suspension (containing 2.6 and 3.4 \times 10^{11} cells for P. aeruginosa and M. denitrificans, respectively) were transferred to 50-ml Erlenmeyer flasks each of which contained 0.5% peptone and 0.15% yeast extract in 10 ml of 10 mM sodium phosphate (pH 6.8). Subsequent procedures were as described above.

<u>Analytical</u> Bacteria were counted in a Petroff-Hausser chamber after appropriate dilution of the samples. Protein was estimated (7) with bovine albumin as standard after washing the cells with ASW or 0.85% NaCl.

Nitrate was determined by the Griess reaction (13) and nitrate by the brucine method (5). Samples were kept frozen prior to analysis. Samples for nitrite and nitrate analysis were withdrawn from flasks at various times by hypodermic syringe, and diluted 20 times with distilled water before they were frozen.

Gas chromatographic analysis of $\rm N_2O$ was as previously described (9). Corrections for $\rm N_2O$ solubility and normalization of initial concentration of $\rm N_2O$ were made.

RESULTS

Fig. 1 shows data from an experiment in which dense cell suspensions of P. perfectomarinus, in the absence (Fig. 1A) and in the presence of 0.1 atm of C_2H_2 (Fig. 1B), were supplemented with N_2O , NO_2^- and NO_3^- . Reduction of N_2O proceeded rapidly in the control but was completely inhibited by 0.1 atm C_2H_2 . Reduction of NO_2^- occurred more slowly. No N_2O accumulated in the control, while in the presence of C_2H_2 there was stoichiometric conversion of NO_2^- to N_2O with no subsequent reduction of the latter. Reduction of NO_3^- to NO_2^- was complete within 8 hr whether C_2H_2 was present or not. Subsequent

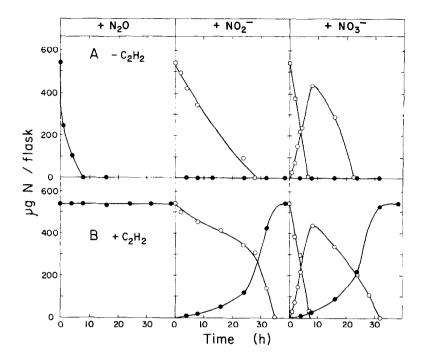


Fig. 1. Reduction of added $\rm N_2O$, $\rm NO_2^-$ and $\rm NO_3^-$ by dense suspensions of *P. perfectomarinus* incubated in a He atmosphere at 24° C (A) in the absence and (B) in the presence of 0.1 atm $\rm pC_2H_2$. Symbols are $\rm \bullet N_2O$, o $\rm NO_2^-$ and o $\rm NO_3^-$.

reduction of the accumulated NO_2^- occurred more slowly. In the absence of C_2H_2 no N_2O accumulated, but in the presence of C_2H_2 there was stoichiometric conversion of the added N to N_2O with no further reduction of the latter. Thus the effect of C_2H_2 on N_2O reduction was very pronounced. Acetylene caused a slight delay in the reduction of NO_2^- but did not affect the rate of reduction of NO_3^- .

Figs. 2 and 3 show the results of similar experiments using P. aeruginosa and M. denitrificans. The patterns of reduction of the nitrogenous oxides in these two organisms were very similar and C_2H_2 caused complete inhibition of N_2O reduction in P. aeruginosa and almost complete inhibition in M. denitrificans. These organisms differed from P. perfectomarinus in showing transient accumulation of N_2O in the absence of C_2H_2 . Compared to P. perfectomarinus they showed rates of reduction greater than could be accounted for by the

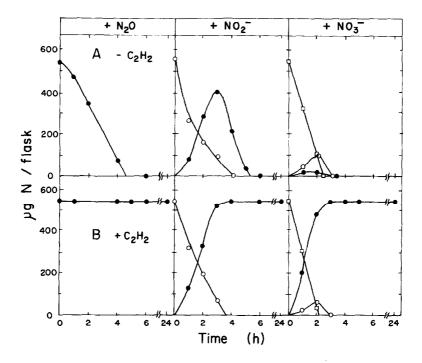


Fig. 2. Reduction of added N_2O , NO_2^- and NO_3^- by dense suspensions of P. aeruginosa. Otherwise, the same as for Fig. 1.

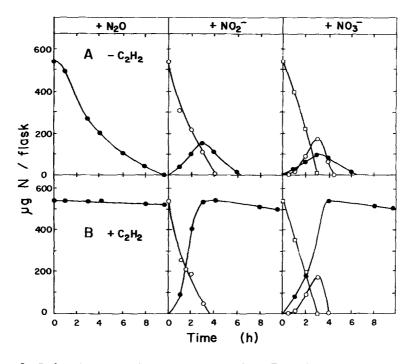


Fig. 3. Reduction of added N₂0, NO₂ and NO₃ by dense suspensions of M. denitrificans. Otherwise, the same as for Fig. 1.

	Time of incubation		Acetylene	Final protein (mg/flask)				
	(hr)	(mg/flask)	(0.1 atm)	N ₂ O	NO ₂ -	№3-		
P. perfectomarinus	ทนร 40	0.45	_	0.63	0.69	0.93		
	70		+	0.51	0.55	0.67		
P. aeruginosa	24	0.70	_	0.77	0.99	1.14		
	24		+	0.74	0.80	1.11		
M. denitrificans	- 10	0.73	_	0.87	1.00	1.30		
	3 12		+	0,81	0.89	1.11		

TABLE 1. Initial and Final Bacterial Protein Concentrations

small differences in cell and protein concentrations.

There was no evidence of reduction of C_2H_2 to ethylene (C_2H_4) in these experiments.

Table 1 shows that only small amounts of growth (measured by initial and final protein concentrations) occurred in the dense suspensions used in the experiments. Growth increments increased in the order $\rm N_2O < \rm NO_2^- < \rm NO_3^-$ and were slightly greater in the absence of $\rm C_2H_2$ than in its presence.

DISCUSSION

The present data show that C_2H_2 , at a concentration of 0.1 atm, causes complete or almost complete inhibition of N_2O reduction without significantly affecting other stages of denitrification. Our unpublished data show that complete inhibition is also shown by 0.01 atm C_2H_2 depending on organisms and experimental conditions. Such growth increments in the order $N_2O < NO_2^- < NO_3^-$ were consistent with the growth and energy yields reported for P. denitrificans (6) and with the possible loss of at least one phosphorylation site in the presence of C_2H_2 .

Nitrous oxide and C_2H_2 are substrates for and competitive inhibitors of

nitrogenase (3). It is therefore interesting that C_2H_2 should be an inhibitor of N_2O reductase. Unpublished data suggest that the inhibition is non-competitive.

The reported effects of N_3^- , CN⁻ and DNP on denitrification (1,8,11,12) are explainable in terms of effects on specific cytochrome systems. However, there are no reports of effects of C2H2 on such systems.

The fact that C_2H_2 specifically inhibits N_2O reduction and causes stoichiometric accumulation of N2O during reduction of NO2- and NO3- suggests that, at least in the organisms studied, N2O is an obligatory intermediate in the sequence of steps between NO_3 and N_2 . This is consistent with studies of P. perfectomarinus (10) but not with studies of P. stutzeri (1) and M. denitrificans (11).

These results suggest the potential utilization of C_2H_2 inhibition of N_2 O reduction in further biochemical studies as well as in the assay of denitrification in complex systems (4). Preliminary experiments (to be published elsewhere) show that the presence of C2H2 permits measurements of N2O accumulation in soils or sediments and may facilitate measurement of the ratio of N2/N2O formed during denitrification.

Acknowledgment This study was supported by the National Research Council of Canada.

REFERENCES

- 1. Allen, M.B., and Van Niel, C.B. (1952) J. Bacteriol. 64, 397-412.
- 2. Best, A.N., and Payne, W.J. (1965) J. Bacteriol. 89, 1051-1054.
- 3. Burns, R.C., and Hardy, R.W.F. (1975) Nitrogen fixation in bacteria and higher plants. Springer-Verlag, New York.
- 4. Fedorova, R.I., Milekhina, E.I., and Il'yukhina, N.I. (1973) Izv. Akad. Nauk. SSSR, Ser. Biol. 1973(6), 797-806.
- 5. Jenkins, D., and Medsker, L.L. (1964) Anal. Chem. 36, 610-612.
- 6. Koike, I., and Hattori, A. (1975) J. Gen. Microbiol. 88, 11-19.
- 7. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- 8. Matsubara, T., and Mori, T. (1968) J. Biochem. (Tokyo) 64, 863-871. 9. Patriquin, D., and Knowles, R. (1974) Can. J. Microbiol. 20, 1037-1041.
- 10. Payne, W.J., Riley, P.S., and Cox, C.D. (1971) J. Bacteriol. 106, 356-361.
- 11. Pichinoty, F., and d'Ornano, L. (1961) Ann. Inst. Pasteur (Paris) 101, 418-426.
- 12. Sacks, L.E., and Barker, H.A. (1952) J. Bacteriol. 64, 247-252.
- 13. Strickland, J.D.H., and Parsons, T.R. (1968) Bull. Fish. Res. Board, Canada, 167, 77-80.
- 14. Vernon, L.P. (1956) J. Biol. Chem. 222, 1035-1044.